
AD-A274 094

RL-TR-93-200
Final Technical Report
October 1993

PARALLEL ASSESSMENT
WINDOW SYSTEM (PAWS)
ENHANCEMENTS

DTIC
Syracuse University ELECTE

UEC2 71993 A
Daniel J. Pease

APPROVEDFOR PUV,""SIoLE r DS7R/U7h0N UNLIM-D

93-31226

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

93 12 23 071

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

APPROVED: 6vn~nea~o-

MILISSA M. BENINCASA
Project Engineer

FOR THE COMMANDER

JOHN A. GRANIERO
Chief Scientist for C3

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE OMB N04-0188
P%. ,tU sm ft. *6U~ dl f fmt i s .' m d Wmu GpW P, t'w -M . i, U'h *m fm ,MW.V uMw CIMnh* r-g ýa . .M
go*i Or n=Wm = U'. i ca 00 cig and rwin w.em d ' loVi Sen ww•w otmgg V0 bs' i . r w • w' r w aspe' d tl. w

cmald 6 Imnm ftA* ftg .tam fmd' tim bj to WNV*tcn Heet~m Sawbw. ONOMaa to I o of Opmadw SwIPgtsU 1215 .Jefw'r
Ow MVWm/. SM tnW.b 1A*m' VA 22=-4r Wto U"O1 d u• rid &wg K Pu P d Ro P* (0. so. W~wgu DC 2Ma

1. AGENCY USE ONLY ware BkanI" Za REPORT DATE I REPORT TYPE AND DATE$ COVERED

October 1993 Final
4. TITLE AND SUBTITLE FUNDING NUMBERS

PARALLEL ASSESSMENT WINDOW SYSTEM (PAWS) ENHANCEMENTS C - F30602-91-D-O001
PE - 62702F

AUTHOR(PR - 5581
TA - 18

Daniel J. Pease WU - P4

7. PERFORMING ORGANIZATION NAME(S) AND AD)RESS(ES) &. PERFORMING ORGANIZATION

Syracuse University REPORT NUMBER

Center. for Science and Technology
Syracuse NY 13244 N/A

9. SPONSORINGiMONITORING AGENCY NAME(S) AND ADORESS(ES) IQ, SPONSORINGIMONITORING
AGENCY REPORT NUMBERRome Laboratory (C3CB)

525 Brooks Road RL-TR-93-200
Griffiss AFB NY 13441-4505

1i. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Milissa M. Benincasa/C3CB/(315) 330-7650

12a. DISTRIBUTION/AVAILAB1LITY ST-, . ;AENT 12b. DISTRIBUTION CODE

Approved for public rf ' ; distribution unlimited.

13 aABSTRACT(ftI' c ,

This final technical report documents work conducted under the Expert Engineering and
Science Program (ES&E) entitled "Parallel Architecture Assessment Tool". This report
contains a summary of the activities conducted under this effort which included the
enhancement of the Parallel Assessment Window System (PAWS). PAWS is an experimental
system for performing machine evaluation and comparisons of parallel architecture
computers against programmed algorithms. This report provides a comprehensive users
manual for the PAWS tool,

14. SUBJECT TERMS it NULAR OF PAWS
High Performance Computing, 'Parallel Performance Assessment, 52
Dataflow Graphs, Parallel Architectures, Visualization Techniques 11a_ CODE

17. SECURITY CLASSIFICATION 1 & SECURITY CLASSIFICATION I9L SECURITY CLASSIFICATION 20M LMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540W-2S. Stwxw Fon 2g (Rm v 29g90
P by ANSI Str la-
2U.0n0

Final Report

for PAWS Enhancement Contract through SRI

Executive Summary

This report is the Final Report contract deliverable for the "PAWS Enhancement
Contract" from SRI for Rome Laboratories.

A modified version of the Parallel Assessment Windowing System (PAWS) that
contains all of the enhancements developed throughout this contract has been
delivered to Rome Labs.

This document contains a summary of the work completed, the final status of
tasks defined for the project, an overview of the enhanced version of PAWS,
and the complete Users Manual for Version 1.0 of PAWS.

Summary of SU Activities

Dr. Daniel Pease, Associate Professor of Electrical and Computer Engineering
at Syracuse University, was the Responsible Individual for the contract. He was
responsible for the technical content and technical management of the work
performed.

Mr. Mikki (Visualization and Parallel Mapping), Mr. Foudil-Bey (Math Modeling
and Assessment), and Mr. Zerrouki (Language to IFN Conversion and
Architectural Characterization) refined PAWS and enhanced its capabilities.

Mr. Mikki refined the visualization tools to include SIMD and distributed
architectures, manual partitioning, and added automated linking to Architecture
Data Base for communication weights of partitioned elements.

Mr. Zerrouki upgraded the Ada to IF1 Converter, integrated his new refinements
with the other parts of PAWS, and tested their impact and correctness.

Mr. Foudil-Bey refined the Assessment System to deal with asynchronous
operations for message passing and to integrate it with the other sections of
PAWS. Accesion For

NTIS CRA&I
DTIC TAB

Unannounced
DTIC QUALITY INSPECTED 8 Justification

By
Dist; ibution /

Availabi?;ty Codes

Avaii a;,d;or
Dist Special

December 1992 I-i SyTrause universuy, _•_ u)artment

Status of Short-term and Long-Term Technical Tasks

Architectural Characterization

1. Migrate the Generic Parallel System Data Base to the Sun4/Sparc
Station environment.

Schedule: Start by: February 15, 1991
Completed: March 15, 1991

Status: Completed: March 15, 1991

2. Refine the Architectural Tools to work in Open View Environment.
Schedule: Start by: May 1, 1991

Complete by: June 1, 1991
Status: Completed: June 15, 1991

3. Characterize a Hyper Cube Message Passing Architecture
Schedule: Start by: March 15, 1991

Complete by: September 15, 1991
Status: Completed: September 15, 1991

Language to IFI Conversion

1. Migrate the Ada to IFI Converter to the Sun4/Sparc Station
environment.

Schedule: Start by: February 15, 1991
Completed: March 15, 1991

Status: Completed: March 15, 1991

2. Refine the IF1 interpreter to work in Open View Environment.
Schedule: Start by: May 1, 1991

Complete by: June 1, 1991
Status: Completed: June 1, 1991

3. Refine the Design of an ADA to IF1 interpreter.
Schedule: Start by: June 1, 1991

Complete by: December 1, 1991
Status: Completed: December 1, 1991

4. Refine the Design of an Lisp to IF1 interpreter.
Schedule: Start by: July 1, 1991

Complete by: September 1, 1991
Status: Refinement Complete October 1, 1991

December 1992 1-2 Syracuse University, ECE Department

StAtus of Short-term and Lona-Term Tachnlai TlakaC, ontinued

Visualization and Parallel Mapping

1. Migrate the Visualization Tools to the Sun4/Sparc Station
environment.

Schedule: Start by: February 15, 1991
Completed: March 15, 1991

Status: Completed: March 15, 1991

2. Refine the Visualization Tools to work in Open View Environment.
Schedule: Start by: May 1, 1991

Complete by: June 1, 1991
Status: Completed: June 1, 1991

3. Refine the Visualization Tools to Provide more types of Partitioning
Schedule: Start by: March 15, 1991

Complete by: September 15, 1991
Status: Completed: September 15, 1991

4. Include Visualization of Execution with Manual Partitioning
Schedule: Start by: September 15, 1991

Complete by: February 1, 1992
Status: Completed: February 1, 1992

Math Modeling and Assessment

1. Migrate the Math Modeling and Assessment Tools to the Sun4/Sparc
Station environment.

Schedule: Start by: February 15, 1991
Completed: March 15, 1991

Status: Completed: May 15, 1991

2. Refine the Assessment Tools to work in Open View Environment.
Schedule: Start by: May 1, 1991

Complete by: July 1, 1991
Status: Completed: June 15, 1991

3. Refine the Assessment Tools to Provide better Significance Measures
Schedule: Start by: March 15, 1991

Complete by: September 15, 1991
Status: Completed: September 15, 1991

4. Refine the Math Model to deal with Asynchronous Operations for
Message Passing

Schedule: Start by: September 15, 1991
Complete by: February 1, 1992

Status: Completed: February 1, 1992

December 1992 1-3 Syracuse University, ECE Department

Overview of Use and Ooerallon of Version 1 .0 of thmn ii

Introduction

Version 1.0 of Parallel Assessment Windowing System (PAWS) is a refined
version of prototypes originally developed for Rome Laboratories (RL) and
DARPA. These refinements were funded by RL. The release of Version 1.0
means that PAWS is now an integrated tool that can be used to assist software
developers and system acquisition personnel to assess parallel systems.

PAWS runs on Sun SparcStations under UNIX and uses Open Windows. It is
easily installed and provides an interactive, visual environment for users who
develop Ada programs to assess their parallelism. PAWS provides users three
fundamental capabilities:

1. Select the best parallel system for their existing Ada applications.

2. Evaluate and visualize the parallelism that exists in their existing Ada
applications.

3. Assist users in learning about parallelism and in manipulating their
programs to execute more effectively on parallel systems.

In this overview each of these will be discussed in detail. However, first the

basic operating sequence of PAWS will be introduced.

Operating Sequence

The basic operation of PAWS is shown in Figure 1.

Ada + Ada to IF
Program 7 Converter Data Flow

Visualization

01111-'*-sTool

Assessment BEST
Tool PARALLEL

SYSTEM
PAWS

Figure 1 - Basic Operation of PAWS

December 1992 1-4 Syracuse University, ECE Department

There are three sections to PAWS, which are usually used in order. These
sections are:

1. Ada-to-IF1 Converter
2. Visualization Tool
3. Assessment Tool

Starting with an executable Ada program the user converts the program into a
data flow structure with the Ada-to-IF1 Converter. The data flow structure is a
representation of the program that is machine independent and can be
analyzed to detect the parallelism expressed in the program. Every user of
PAWS starts by converting their programs into a data flow structure.

The user can then look at the parallelism in his program by visually following its
parallel execution with the Visualization Tool. The Visualization Tool provides a
high-level view of parallelism for the user. They can get a feel for its parallel
execution. In addition they uan manipulate their program to be executed in
different ways on different parallel systems.

Finally the user can look at the parallel execution of their program in technical
detail. This is done with the Assessment Tool. This tool provides detailed
profiles and analysis of the expected execution of the users program on
different parallel systems. These results are then analyzed by the Assessment
Tool to identify the best parallel system.

Select the Best Parallel System

This perspective is aimed at the user that just wants to make a detailed
assessment to identify which specific Parallel system is the best for their
application. Figure 2 shows the path of usage for this pure assessment.

Ada Ada to IF1
Program Converter

Partition
i• and Map

Data Base Assessment BEST

Tool "PARALLEL
SYSTEM

PAWS

Figure 2 - Using PAWS to Select Best Parallel System

December 1992 1-5 Syracuse University, ECE Department

The user takes their Ada program and converts it into a data flow graph with the
Ada to IF1 Converter. This can be done in pieces, but has to be done in
accordance to the hierarchy of the program, starting at the top.

Then the Visualization Tool is used to partition the graph into pieces that can
execute independently and to map the graph to several architectures. The
Visualization Tool will do this partitioning and mapping automatically based on
built-in optimization algorithms. There will be a separate mapping for each
different architecture. The partitioning and mapping results are saved in data
files which are then passed to the Assessment Tool.

The Assessment Tool will then perform a detailed analysis of the execution
performance of the data flow graph on the different architectures using the
mapping and partitioning information and architectural parameters from the
architectural data base. The results of this analysis will then be compared by
the Assessment Tool and the most suitable parallel system is identified. This is
an automatic process with a ranking produced of all the architectures
considered.

Evaluate and Visualize Parallelism

This perspective is aimed at the user that just wants to make a detailed analysis
of the performance of a particular architecture for their application. The user will
be generating a great deal of information that is presented to them for their
evaluation. It is assumed that the user will understand what performance data
is and its interpretation is left to the user. Figure 3 shows the path of usage for
this detailed performance assessment.

Ada Ada to IF
Program Converter

Visualization

Assessment P "s
Tool

PAWS

Figure 3 - Using PAWS to Assess Detailed Performance of Program

The user takes their Ada program and converts it into a data flow graph with the
Ada to IF1 Converter. This can be done in pieces, but has to be done in
accordance to the hierarchy of the program, starting at the top.

December 1992 1-6 Syracuse University, ECE Department

Then the Visualization Tool is used to partition the graph into pieces that can
execute independently and to map the graph to several architectures. The
Visualization Tool will do this partitioning and mapping automatically based on
built-in optimization algorithms. The user will be able to intervene at this point
and manually partition their programs if they want to evaluate different possible
partitions and their resultant mappings. Each partition will be a separate
mapping for each different architecture. The partitioning and mapping results
are saved in data files which are then passed to the Assessment Tool.

The Assessment Tool will then perform a detailed analysis of the execution
performance of the data flow graph on the different architectures using the
mapping and partitioning information and architectural parameters from the
architectural data base. The results of this analysis will then be displayed to the
user. Different iterations of this analysis with variations in parameters like the
sizes of loop indices can be performed. All of the results can be saved. Results
from multiple analysis can be displayed simultaneously in different windows so
they can be compared. Most of the results are presented in graphical form.

Assist Users in Learning about Parallelism

This perspective is aimed at the user that wants to learn how to write more
effective parallel programs. Figure 3 shows the path of usage for this detailed
performance assessment.

_Manual Partitionin

Ada Ada to IRi
Program 7Converter

Visualization

Execution Simulation
Figure 4 - Using PAWS to Learn About Parallelism

The user takes their Ada program and converts it into a data flow graph with the
Ada to IF1 Converter. This can be done in pieces, but has to be done in
accordance to the hierarchy of the program, starting at the top.

December 1992 1-7 Syracuse University, ECE Department

Then the Visualization Tool is used to identify the parallelism in the data flow
graph representation of their program. This parallelism will be displayed to the
user as a graphic representation of the data flow in their program. The user can
then simulate the execution of their program on several generic architectures in
order to see how well it executes and what the problem areas are that restrict its
execution on a particular class of architecture. The classes that can be
simulated are:

Sequential Uniprocessor,
Single Instruction Multiple Data Stream Parallel Processor (SIMD),
Multiple Instruction Multiple Data Stream Parallel Processor (MIMD) with

task synchronization,
Multiple Instruction Multiple Data Stream Parallel Processor (MIMD) with

synchronization at the node level, and
Multiple Instruction Multiple Data Stream Parallel Processor (MIMD) with

manual partitioning.

The Visualization Tool will show the user synchronization penalty and the
relative performance of the different parts of their program so they can learn to
partition in a manner that leads to load balancing. These capabilities can be
reused over and over with different versions of their program. Multiple windows
with the versions can be managed on the screen so the different versions can
be compared.

Hybrid Use of PAWS

Features of each of the three perspectives of PAWS can be used at the users
discretion. As thL) user learns more about parallelism they can perform more
detailed analysis of their programs using the Assessment Tool. All of the
capabilities of PAWS can be used at any time, as long as the fundamental chain
of order is maintained. This chain is:

Step 1 - No visualization, partitioning, mapping, parallelism detection or
assessment can be done until the users Ada program has been run
through the Ada to IF1 Converter.

Step 2 - No assessment can be done until the data flow graph of the users
Ada program has been partitioned and mapped by the Visualization Tool.

Step 3 - No determination of best architecture can be made until the
Assessment Tool is used.

December 1992 [-8 Syracuse University, ECE Department

PAWS USER'S MANUAL

A Software Development Tool For
Assessment of Parallel Computers

and Parallel Programs

Release 1. 1
October 2 9 th, 1992

Developed by

Prof Dan Pease
Kamal Foudil-Bey
Mohammed Mikki
Mohamed Zerrouki

at

Syracuse University

for

Rome Laboratory

1 PREREOUESITES FOR THE INSTALLATION OF pAWS:

PAWS requires the following items to run:

- The X Window system in an openwindow environment

- YACC: A language parser generator.

- LEX: a language lexical generator.

--- ,mmnm i mum , g nnmmunmn mnia l n il~ lIIMNnmn Il2

2 INSTALLING PAWS

PAWS resides in a global directory called PAWS which in turn contains all the sub-
tools that make up the PAWS package. Its installment requires the installment of all
the directories pertaining to each tool. The installment of each subtool is discussed
in the following sections.

Figure 1 shows the directory structure of the PAWS software. For a successful exe-
cution the following environment variable must be defined in the .cshrc file:

setenv MYPAWS $HOME/<OPTIONAL PATH>/PAWS

The OPTIONAL PATH refers to any path between the user home directory and the
PAWS directory. For example if PAWS resides in the directory
userdirectory/ALPHA/BETA/PAWS then the optional path would be
ALPHA/BETA
The following directories contain source code with their associated Makefile:

- $MYPAWS/GDT/APPL
- $MYPAWS/GDT/PARSE

- $MYPAWS/GDT/GRAPHDISP

- $MYPAWS/GDT

- $MYPAWS/PPA/INTERFACE

- $MYPAWS/PPA/X-SHELL
- $MYPAWS/PPA/ASSESSMENT

- $MYPAWS/WAIC/AIC

- $MYPAWS/WAIC/SAIC
- $MYPAWS/XPAWS

If any changes are made to the source code in any of the directories cited above, the
user must recompile the appropriate section by invoking the" make" command

2.1 Description of Directory Content

$MYPAWS/WAIC/ADAFILES: This directory contains Ada files which are used to
convert Ada code to IF1 code. Any Ada application must reside in this directory in
order to be accessible by the converter.

$MYPAWS/WAIC/AIC: This directory contains the programs necessary for the

PAWS

ADAFILES

AIC

DBGFILES

-o-WAIC IFIOPTFILES

PARSE

SAIC

SISAL

APPL

EXECUTABLEFILES
GDT

GRAPHDISP

PARSE

ASSESSMENT

INTERFACE

INFO-FILES

PPA- INFO-NODES
SEXECUTION-TIMES

INTERFACE
PARAL-PROFILES

PROFILES -

SPEED-UP
X-SHELL

METRICS

XPAWS

IF1FILES

conversion of Ada code to IF1 code. There are five categories of files:

FIGURE 1 Paws Directory Structure Organization

4

- Files storing the lexical and syntactic specifications of the Ada language.
- Header files for all the common variables used by the converter programs.
- Files storing the semantical routines for the converter. These files have the

prefix "IFi_".
- Files generated when the tools LEX and YACC are applied to the specifica-

tion files.
- File containing a routine for syntax error detection in Ada programs.

$MYPAWS/WAIC/DGBFILES: This directory contains three categories of debug-
ging files generated by the converter:

- Files that store the symbol table of the Ada to IFI converter, which displays
all the variables used in the Ada source code. It is a block structured symbol
table, where each block corresponds to a specific scope of the Ada code.
These files have the "tbl" extension.

- Files that store the scope tree of the Ada source code according to the con-
structs used. Each compound construct in Ada has a scope associated with it.
This tree illustrates the relationship between the scopes in a parent-child
fashion. These files have the "scp" extension.

- Files that store the trace of the conversion of Ada constructs to IF1 primitives.
It provides a history of all actions taken by the converter. These files have the
"trc" extension.

$MYPAWS/WAIC/IF1OPTFILES: This directory contains files obtained by apply-
ing the OSC (Optimizing Sisal Compiler) tool provided by Lawrence Livermore
National Laboratory. There are six categories of files:

- Files that store opimized IF I code. These have the "opt" extension..
- Files that store a non-dataflow version of IFI called IF2. Theses have as suf-

fix "mem".
- Files that store another intermediate form similar to IF1 but has more non-

dataflow nodes to it (memory management nodes). These have the "up" ex-
tension.

- Files that store IF2 code with partitioning data associated with all the compo-
nents of IF1 graphs. These have the "part" extension.

- Files that store an equivalent C code of the IF1 code. These have the "c" ex-
tension.

- Files that store the equivalent Assembly code. These have the "s" extension.

$MYPAWS/WAIC/PARSE: This directory contains the programs needed for a
complete Ada parser. These programs were built using Ada specification files
obtained from other sources. These programs do not perform any conversion but
check for syntax errors in Ada programs.

$MYPAWS/WAIC/SAIC: This directory contains the programs necessary to gener-

5

ate the window environment which allows the users to run the application charac-
terization tool. The window environment is a set of menus designed for for selecting
different options that the tool supports.

$MYPAWS/WAIC/SISAL: This directory contains Sisal programs that are supplied
by the users. Sisal is a data flow experimental language. It is a highly parallel lan-
guage developed by Lawrence Livermore National Laboratory. IFI is the program
graph of the Sisal language.

$MYPAWS/GDT: In addition to containing the above three directories this direc-
tory contains the following items.

- The executable file generated from using the "make" command in the $MY-
PAWS/GDT/APPL directory.

- The executable file generated from using the "make" command in the $MY-
PAWS/GDT/PARSE directory.

- The executable file generated from using the "make" command in the $MY-
PAWS/GDT/GRAPHDISP directory.

$MYPAWS/GDT/APPL: This directory contains the following items.

- The main menu for the GDT.

- The main menu for selecting the available IFIfiles.

$MYPAWS/GDT/EXECUTABLEFILES

$MYPAWS/GDT/GRAPHDISP: This directory contains the following items.

- IF1 Graphical display tool.

- All programs dealing with partitioning, graphical display, execution simula-
tion etc.

$MYPAWS/GDT/PARSE: This directory contains the following item.

- Data conversion from IF to C-Structure for visual display purposes.

$MYPAWS/PPA/ASSESSMENT: This directory contains the following items:

- Assessment program: This program is the core of the assessment tool. It per-
forms a graph walk algorithm and generates several data files for display and

6

analysis. All the output files generated by the assessment code are stored in

the directory $MYPAWS/PPA/PROFILES

$MYPAWS/PPA/DATA-FILES: This directory contains the following items.

- Data files shown in figure 2

$MYPAWS/PPA/INFO-NODES: This directory contains the following items:

- Files that have the following format: "<main I procedure name>.<int>". As an
example "main.26" will contain information relevant to compound node or
CALL node number 26 in the main application.

"* If node number 26 is a compound node, then the file main.26 will
have the following fields:
<node name>,<iteration number>, <status>.
Node name will be either LOOPA, LOOPB, FORALL, SELECT,
or TAGCASE.
Iteration number will be the upper bound of the number of itera-
tions for LOOPA and LOOPB type nodes.
Status is a boolean variable that specifies if a loop slicing strategy
must be adopted for that particular compound node. Possible val-
ues are TRUE or FALSE.

"* If node number 26 is a CALL node (i.e, procedure call) then the
file main.26 will have the following fields:
<node name>,<iteration number,<status>

X (int)

Application.procedure_ 1 (char) Y1 (int)

Application.procedure_2 (char) Y2 (int)

Application.procedureji (char) Yi (int)

Application.main (char) Z (int)

FIGURE 2 Filename data Format

$MYPAWS/PPA/INFO-FILES: This directory contains ASCH type format files
where in' -rmation relevant to each application is stored. (See section 6.1.6)

$MYPAWS/PPA/INTERFACE: This directory contains the following items:

- The program gerne; ating input data for the assessment program. The data is
obtained partially from the output of the program "parse"(available as a sub-
program in the GDT tool). The Interface code also performs automatic gener-
ation of several data files that are used by all programs residing in the

7

directory PPA. The interface code uses as input an IFI file(Application.ifl)
from the directory
$MYPAWS/PAWS/IF1FILES and generates the following data files:

"* Application.data

"* Application.main

Figure 2 shows a typical Application.data format. The total number of functions
(including the main function) is represented by X. Yi is the number of nodes
included in procedure i. Z is the number of nodes included in the main function. The
files listed in Application.data will reside in the directory $MYPAWS/PPA/DATA-
FILES. These files contain ASCII code corresponding to the IFI graph of the ADA
program being analyzed.

$MYPAWS/PPA/PROFILES/EXECUTION-TIMES: This directory contains the
following items:

- All main function and procedure execution times.

$MYPAWS/PPA/PROFILES/METRICS: This directory contains report files in
which a summary of metrics are collected. This function is not fully implemented
in this version.

$MYPAWS/PPA/PROFILES/PARAL-PROFILES: This directory contains output
files generated by the Assessment program for displaying parallel profiles. All files
in this directory will have the prefix "profile_". These files are used by the xgraph
program to plot the parallelism profile of an application or any one of its compound
nodes or procedure.

$MYPAWS/PPA/PROFILES/SPEED-UP: This directory contains output files gen-
erated by the Assessment program for displaying speed-up profiles. All files in this
directory will have the prefix "speed-up-". These files are used by the xgraph pro-
gram to plot the speed-up curve of an application or any one of its compound nodes
or procedure.

$MYPAWS/XPAWS: This directory contains the source code for a user friendly
interface initializing PAWS in an X Windows environment.

$MYPAWSI[F1FILES: This Directory contains IF1 files generated by the Ada con-
verter.

$MYPAWS/PPA/X-SHELL: This directory contains the following items:

- Xassess program: This program is the user friendly interface developed under
X_Windows to facilitate the input/output of data relevant to the assessment
program. It consists mainly of popup windows with menus and submenus.

8

] InMflln. -and Ustrtfin PAWS

Once the directories have been created, the "make" command must be invoked in
each directory where source code exists. If any change is made to the source code,
then the code in that directory must be recompiled.

3.1 Preliminaries

PAWS can be invoked in 2 different ways. A user can execute PAWS by typing the
"$MYPAWS/XPAWS/Welcome"
If PAWS is to reside in a specific location for an extended period of time, then it is
best to start PAWS from the OpenLook window manager. This can easily be accom-
plished by adding the following lines to the file openwin-menu used by your sys-
tem, for more information see your system administrator.
"START PAWS ..." exec $MYPAWS/XPAWS/Welcome
Once PAWS has been started the "welcome window" is displayed offering the user
the choice to start PAWS or exit (Please figure 3).

FIGURE 3 Welcome Window

9

By moving the mouse pointer over "ENTER", (in figure 3), and clicking the left
mouse button, the tool menu window is displayed (see figure 4).The user can exe-
cute any of the tools from the list.

g_. .

FIGURE 4 Tool Menu Wnndow

10

4 Running the Annlication Charateriation Tool (AIC)

The application characterization tool is the cornerstone of PAWS. It takes an appli-
cation and converts it into a parallel dataflow IFI graph. The application charcater-
ization tool can be started by moving the mouse pointer over "AIC (Converter)" in
the tool menu and clicking the left mouse button. The AIC main menu will be dis-
played, (see figure 5).
Applications written in ADA or SISAL can be transformed into IFI code by select-
ing one of the first two menu options,"ADA to IFI CONVERSION' or "SISAL to
optimize IF1 CONVERSION". The other options "IFI CODE OPTIMIZATION"
is used to code on a SUN machine, and "IF 1 CODE EXECUTION ON SUN" is
used to run code on a SUN machine.
A message window shown in light gray reports to the users the selections from the
different menus, as well as the start and end of every selection performed in the
menu.

FIGURE 5 AIC Main Menu

4.1 Ada to IFI Conversion

This option is selected by moving the mouse pointer over "ADA TO IFT CONVER-
SION" in the application characterization menu and clicking the left mouse button.
A menu of four options is displayed (see figure 6). The first option "PARSE ADA
SOURCE PROGRAM ONLY" parses Ada programs without generating IF1 code.
It is very useful in detecting correct Ada programs before any conversion. The sec-

1I

ond option "CONVERT ADA TO IFI" is the core of the tool and its selection
enables the user to convert Ada source code into IFI code. The third option "VIEW
ADA CONVERSION FILES ONLY" allows the user to view the files generated by
a conversion. The selection of any of the options displays a menu of Ada files. There
are three files generated after converting an Ada programs. These files store infor-
mation about the application code as well as the conversion process.

i • --.. '.''• ".- .

..4i....

FIGURE 6 ADA io 1171 Conversion Options

4.2 Sisal to INi Conversion

This option is selected in the same manner as the "ADA TO [Fl CONVERSION"
option. Sisal is an experimental applicative language similar to IFi. Applications
written in Sisal can be transformed into parallel IFi graphs. The conversion is done
by using the OSC tool. This option displays a menu of Sisal files.

4.3 IN Code Optimizations

This option is selected in the same manner as the "ADA TO IFl CONVERSION"
option. This option is useful in certain cases to obtain equivalent IFI codes. When
this option is selected the user is presented eight conventional optimizations which
can be applied to a selection of IFv source files (refer to figure 7). One option
enables the user to apply all the optimizations. Any selection made in this menu will
display a menu which enables the user to view both the source and the target files.

12

4.4 IFI Code Execution on Sun

This option is selected in the same manner as the "ADA TO IFI CONVERSION"
option. This option uses the OSC tool to run IFI code on a Sun machine. Selection
of this option displays the second menu list in figure 8. IF1 can be converted into
three intermediate forms which are merely dataflow optimizations of IF! for effi-
cient execution. These are obtained by selecting the three first options. The fourth
and the fifth options respectively, convert IF1 code to an equivalent C program and
local Assembly code. The last option executes [F1 code on a local Sun machine.
Both the source and target files can be viewed by using the menu.

FIGURE 7 WI1 Optimization Menu

13

"ý4ý L 0 IFI

I C f 1 z

I FA iD L L":,ýýECLJT 1 ON N

I
IF I T 0 F2UP

f- PnR T

I (m 4

V tEU f F I SOURCE CGOE

V i E W Týý'ýRGET CODE
EX I F TO PREVIOUS L EVEL

'M

FIGURE 8 IFI Code Execution On Sparc I+ Menu

14

5 Running The Granhie Disnlay Tool (GDT•L

The Graphics Display Tool (GDT) is started by moving the mouse pointer over
"GDT (Display)" in the tools menu and clicking the left mouse button. The GDT
menu will be displayed, (refer to figure 9).

GDT allows the user to display IF1 graphs , partition IF1 graphs and execute IFI
graphs.

ip - -opps , ,on

SF'L-->C--Str-uct

11S•PLAliy

FIGURE 9 Graphical Display Toll Menu (GDT)

5.1 IFI->C Struct:
This option is selected by moving the mouse onto the "IFI->C-
Struct" in the GDT menu and clicking the left mouse button. When
the "IFl->C-Struct" is selected, a file listing is displayed (refer to fig-
ure 10) which allows the user to select an IF1 file to be converted to a
C-Struct.

15

5.2 Dis&lay

This option is selected in the same manner as the "IF l->C-Struct" option.

iqPPL I CRT I OHS

I~ ~ ~ les.i

test if

FIGURE 10 File listing in the GDT.

When "DISPLAY" is selected a file listing is shown. The user then selects a file for
display. In the "DISPLAY" mode the user can manipulate the graph further through
the GMM (Graph Manipulation Menu) which is displayed by pressing the middle
mouse button. In figureI1 the graph created by the GDT is given for the IF1 pro-
gram While the cursor is in the display window, the user can invoke the GMM menu
by clicking the middle mouse button and selecting a particular option.

The usage of each option will be detailed in section 5.2.1.

16

I I

[I

FIGURE 11 Displaying a Graph

5.2.1 Selecting and Unselecting a node, edge or literal

The user can select a node, edge or literal by clicking the left mouse button with the
mouse pointer inside the node or the box which represents the edge or literal. When
selected, a node, edge or literal changes color. To unselect a node, edge, or literal,
the user can click the left mouse button in a clear area of the display window. A new
node, edge or literal can then be selected by clicking the left mouse button with the
mouse pointer inside the new node or box.

17

FIGURE 12 Node and Edge Graphical Representation of an IFI Graph

5.2.2 Graph Main Menu (GMM)

GMM is invoked by clicking the middle mouse button while the mouse pointer is
in the display window, refer to figure 13.

The GMM options provide complete access to the graph. They enable the user to
examine any part of the graph in a hierarchical fashion.A description of the function
of each of the GMM options follows:

- Expand: Displays the subgraphs of a compound node. A user must select a
compound node before selecting the expand option.By expanding a com-
pound node the IGD displays the scope immediately lower than the currently
displayed scope.It also displays the current scope which can no longer be ma-
nipulated.

18

Expand

Colllalpe

Open Node

Open Edge

Display 'CALL' Function

Partition

W,;ight

Run Man. Partition

Run Algorithm (1)

Run Algorithm (2)

Man. Partition
Visualize Man. Partition

Cancel a Partition

Cancel the Man. Partitions

Show Source Code

Exit

FIGURE 13 Graph Manipulation Menu (GMM)

- Collapse: Destroys the current scope and display the previous scope.

- Open node: Opens a node and displays information about the selected node.
An example of information displayed includes: opscode, type of the node if
it is compound or simple. The user must select a node first.

- Open edge: Similar to the open node option but it is for an edge.
- Display call func:Displays the graph of the function which is called by the

call node selected. The user must select a call node in order to execute this
option.

- Man Partition: Partitions the graph according to the user's selections.The user
must choose a cut set of the nodes first by selecting an edge.The partitioning
is done according to a partitioning algorithm which in brief adds a new parti-

19

tion to the graph each time "man partition" is executed succesfully.This new-
man partition". (refer to figure 14).

FGo back to Prey.

FIGURE 14 Intermediate Menu (IM)

If the "go to prey. scope" option is selected, the previous scope will be displayed. If
the "compress partition" option is selected the nodes belonging to the same partition
will be displayed in one box .If the user presses the middle mouse button with the
mouse pointer in this display window, a new menu called the Partition Menu
(PM)wiU be displayed, (refer to figure 15).

Go back to Prev. Scope
Expand partition
Open Partition
Map To Multimax
Weight
Run
Show Source Code
EXIT

FIGURE 15 Partition Menu(PM)

The "go to prev. scope" option displays the EF1 graph at the latest scope viewed.
The "expand partition" option will display the nodes of the selected partition (cur-
rently not in use). The "open partition" option will display information about the
selected partition.The "map to Multimax" option will map the current partition of
the graph to the Encore Multimax multiprocessor machine (currently not in use).
The "show source code" option will display the source code of the selected parti-
tion(i.e. the source code of the nodes and edges that belong to that partition).The
"quit" option takes the user back to the "Display" menu of the GDT.

20

5.3 The Error Messages

A listing of the error messages issued by the GDT is found in the appendix.

approach of algorithm (1) in section 5.5.1.

.............. El

-.................

FIGURE 16 Join Fork Execution Fashion of the nodes in Levels

For both algorithm (1) and (2) the running of the program starts from the top level
and continues until the completion of the bottom level. The user can interrupt the
execution of the program by pressing any mouse button inside the window wherein
the graph is displayed

5.4 Manual Partitioning of the IF1 Graph Code DispDlay

5.4.1 Manual Partitioning of the IFI Graph Code Display

In order to execute the IF1 graph on a given parallel system it should be partitioned
into parallel tasks, then these tasks should be mapped onto the PE's of the parallel
system. Usually partitioning is done automatically by the software.It is difficult to
verify whether or not this automatic partitioning is efficient. One method of verify-

21

ing the performance of the automatic partitioner is to provide a tool that allows the
user to manually partition the graph, then comparison can be made between the
automatic and manual partitions.lf the user partitioned a graph and obtained a better
performance than the automatic partitioner then we can say that the automatic par-
titioner is not optimal and should be modified.
In this section we describe this type of a tool called the IFI Manual Partitioner
(IMP). In subsection 5.6.2 we present a general description of this IMP.

5.4.2 IMP General Description

As a starting point all nodes in the graph are assigned the zero partition. The user
partitions the graph by selecting an edge that makes a cutset between the nodes.The
source node of the selected edge is called the tnode which is the first node to be
included in the new partition. The old partition of tnode is considered the parent or
father of the new partition . The nodes included in the new partition include all
nodes in the parent partition that have a path from their output node to the input of
the tnode .The parent partition is then modified to exclude all the nodes assigned to
the new partition.This approach insures that the partitioned tasks have no cycles
among them since we start with a data flow graph which contains no cycles and
enforce the no cycles policy during the partitioning. Figure 17 shows an example of
the implementation of the IMP to a sample IF1 graph. There are two trivial parti-
tions of the IF1 graph;

- All nodes belong to the same partition, then the number of partitions is equal
to one.

- Every node belongs to a different partition, then the total number of partitions
is equal to the total number of nodes in the graph.

An existing partition can be cancelled by using the option in the menu which manip-
ulates the partitioning process. Also all the existing partitions can be cancelled at
once and the user can start from the begining all over again.

22

...
2:0

23

6 USING the Predictive Parallel Assessment Tool (pPAP

PPA is an important part of PAWS. It allows the user to display parallelism profiles,
speedup curves and metrics. It takes as input an IFI file that was partially converted
to a C structure. The PPA tool can be started by moving the mouse pointer over
"PPA (Assessment)" from the tool menu and clicking the left mouse button. The
predictive assessment tool window will be displayed (see figure 18)

FIGURE 18 PPA Startup Window

6.1 CONVERT C TO G Struct

The assessment process starts by converting a C-Struct to a G-Struct. This task is
accomplished by selecting the "CONVERT C to G-Struct" option.This option can
be selected by moving the mouse pointer over the "CONVERT C to G Struct" and
clicking the left mouse button.A listing of available files is displayed as showed in
figure 19. The user can select a file for conversion. A message window at the bottom
of figure 19 will display the current state of the PPA Tool. If more than ten files are
available, then use the "UP" and "Down" button to scroll through the available files.
All files must be WI files and must have the extension.if 1. Once the conversion has
been completed, the message window will display the word "READY".

24

FIGURE 19 Choosing a File for Conversion

After a successful conversion, the user can invoke the "GO to ASSESS PRO-
GRAM" option. This option is selected in the same manner as the "CONVERT C
to G Struct" option. When the "GO to ASSESS PROGRAM" option is selected, a
new menu is displayed over the current menu (see figure 20).

6.1.1 RUN ASSESS CODE

The "RUN ASSESS CODE" option is selected by moving the mouse pointer over
it and clicking the left mouse button. When this option is selected a list of files is
displayed and the user can select the appropriate file. Once the user selects a file and
the run is successful, a "READY" message appears in the message window.

6.1.2 DISPLAY RESULTS

The option "DISPLAY RESULTS" is selected in the same manner as the "RUN
ASSESS CODE" option.By selecting "DISPLAY RESULTS" a menu is displayed.
All the options available at this stage are for display purposes and analysis, (see fig-
ure 21 shows the options available for result display.

25

FIGURE 20 Go to Assess Program Options

FIGURE 21 Display Result Options

26

6.1.3 DISPLAY PARALLELSIM PROFILE

By selecting this option, the user can display the parallelism profile of any com-
pound node or call node that exist in the application. All files eligible for display
have the following syntax <profile-name.maincompound.#> where the boldface
components are reserved words of the PPA tool.The word "name" would be the
name of the program being assessed and the number "#"would be the id number of
the compound nodes that exist within the main program. All files that have some
other word in place of main are call node display files.

6.1.4 DISPLAY SPEED-UP CURVES

By selecting this option, the user can display a cumulative speedup curve for any
compound node or call node that exist in the application. All files eligible for dis-
play have the following syntax <speed-up-name.maincompound.#> where the
boldface components are reserved words of the PPA tool.The word "name" would
be the name of the program being assessed and the number "#"would be the id num-
ber of the compound nodes that exist within the main program. All files that have
some other word in place of main are call node display files.

6.1.3 DISPLAY METRICS

By selecting this option, the user can display the execution time of any main pro-
gram or function contained in the main program.

6.1.6 SHOW APPLICATION SUMMARY

Displays in a condensed fashion the main parameters of the application the user is
evaluating. To exit the user must type "close" at the bottom of the window, (see fig-
ure 21).

6.1.7 CHANGE DEFAULT VALUES

By invoking this option the user can change the database used by the PPA tool to
evaluate an application. Currently three different databases exists. A user's data-
base, in which data is custom fit to the user's needs, and two predefined databases
for MIMD type machines (such as the Multimax), and SIMD type machines (such
as the Connection machine). An on-line architecture tool has been designed to
access all aspect of the architecture being evaluated.
Important: PPA uses by default the user's database. If a new database is cho-
sen, then the program must be rerun before any effect can take place.

27

maln.Info

FIGURE 22 Result Summary Example

6.1.8 SET LOOP VALUES

PPA does not handle run time loop bounds. All ioop values must be entered before
running the assess program. A default value of five iterations is taken if bounds are
not set by the user. If bounds cannot be determined at compile time, then an estimate
or a determination from a frequency count should be applied. To select this option
the user must move the mouse pointer over "SET LOOP VALUES" and click the
left mouse button. A window similar to the window in figure 23 will be di~played.

In the example shown in figure 23, file Ioop6.2 contains three fields.
The first field is the type of LOOP (A or B). The second field is the upper bound for
that node. The third field is an advanced feature allowing the user to specify if the
loop can be sliced or not. The default value is False. In case, slicing is needed then
that field must be replaced by the integer value "1".

28

:Current file is: looP6.2

LOOPA 5 FALSE

SearcSearch Next

Editor
Rel oad

ChWnWO file

Now window

QI uit II Help

FIGURE 23 Settng Loop Values

In the example shown in figure 23, file loop6.2 contains three fields.
The first field is the type of LOOP (A or B). The second field is the upper bound for
that node. The third field is an advanced feature allowing the user to specify if the
loop can be sliced or not. The default value is False. In case, slicing is needed then
that field must be replaced by the integer value "1".

29

APPENDIX

30

-A- Supnlemental User's Manual for PPA

A.1 File Format:

This part will be explained through the use of an example. Assume an Ada program
called "application.a" exists. After running it through the ADA to IFI converter,
it generates a file called "application.ifl.Assume that "application.ifl" contains
a main program and two procedures called "procedurel" and "procedure2".
Assume that "procedurel" contains two compound nodes. Conversion of the IFI
structure to the G structure will generate the following files:

- "application.data",

- "application.main",

- "application.procedure ",
- "application.procedure2"

The file "application.data" will look like figure 24
If the number of nodes in procedurel, procedure2 and "application" were 34,16

and 6 respectively then the file "application.dat" will contain the following 4 lines
(see figure 24):

3

Appplication.procedure 1 34

Application.procedure2 16

Application.main 6

FIGURE 24 Example of Application Data

A.2 What is the content of the 3 generated files?

Each one of the three cited files contains data directly relevant to the application at
hand. As a simple reminder we would like to emphasize the fact that nodes are the
focal point, and therefore each node will be associated with a set of data that
describes its location, number of inputs and outputs, execution time, and level.
Assuming the G structure has been properly generated, then the assessment pro-
gram, can be invoked. A successful run of the assessment program will generate
several files that will be used for plotting items such as parallelism profiles, and
speed-up curves. For the example at hand, this would generate the following files:

- profile-application.main

- profile application.procedure 1

- profile-application.procedure 1_compound.#1

- profile-application.procedure 1_compound.node#2

- profile-application.procedure2

31

These files will be stored in the directory $MYPAWS/PPA/PROFILES/PARAL-
PROFILES. The speed-up data files will be stored in the directory $MYPAW/PPA/
PROFILES/SPEED-UP. The files expected to be found are:

- speed-up.application. main,

- speed-up-application.procedure 1
- speed-up-application.procedure lcompound.# I

- speed-up-application.procedure lcompound.#2

- speed-up-application.procedure2

All of these files are displayed using the xgraph utility of the X Window system.
The directory $MYPAWS/PPA/PROFILES/EXECUTION-TIMES will contain the
following files:

- application.main,

- application.procedure I,
- application.procedure2

These files contain the execution time of the 2 procedures as well as the execution
time of the main application.

A.3 A Simple Example: Matrix Multiplication

The code of matrix multiplication is shown in figure 25.

for(i--O;i<N;++i)

for(j=O;i<N;++j)

sum--O;

for(k--O;k<N;++k)

M[i][j]=sum + A[iI[kI*B[k]U];

FIGURE 25 Matrix Multiplication Example

For obvious reasons,the inner most loop cannot be executed in parallel as written.
However, if the user specifies a loop slicing procedure (See section 6.1.8), then erro-
neous results will be generated without the user detecting any anomaly in the exe-
cution.
Figure 26 and 27 show the parallelism profile of the matrix multiplication program
without loop slicing and with loop slicing.

32

FIGURE 26 Mlatrix Miultiplication without L oop Slicing

FIGURE 27 Matrix MIultiplication ý% itli Loop Slicing

33

-B- IGDT APPENDIX

B.1 THE IFI to C-STRUCTURE PARSER (ICP)

An IF1 to C-structure Parser (ICP) tool has been designed which is described in this
section. This ICP takes an IFI file as an input and produces a complete set of C-
structures as an output. This completely describes and represents the IF1 code. In
this section the ICP tool is described. The ICP scans the IFI program file and con-
structs a data structure representing the program as a result. Two files containing
information about the constructed data structures are generated. The ICP scans the
IFI file and builds a list of nodes, edges and graphs. The list of the graphs represent
the main graph in the IFI file and the function graphs corresponding to the call func-
tions.The data dependency between the nodes is empirically included in each node
structure.The list of edges includes all the edges and literals in the IF1 file.

B.2 C Structure Definitions

These structures are defined to contain the information needed to create the visual
data flow graph and to parallelize it; specifically there are three fundamental struc-
tures:

- Node structure

- Edge structure

- Graph structure

B.3 Accessing Information In The Data Structures

Three lists of data structures are built: one for the nodes "nodeptr[][], one for the
edges "edgeptr[][]", and the third is for the graphs "graphptr[]". The first dimension
in the nodeptr and edgeptr lists is the scope specification and the second dimension
is the node or edge index within the scope.There are two ways to access the infor-
mation in the IFI graph of the data structures returned by the ICP:

- The first way to access the information is where the data structures are ac-
cessed directly. For example if the user wants to access element x in the node
j in scope i the he is to print nodeptr[i][jl.x.

- The second way to access the information is an indirect one where the user is
to use the displayed graph to get the information. For example if the user
wants to access the information about a specific node in the graph the user
must select that node and open it to get the information.

B.4 IFI Graph Display(IGD) Tool Approach

The IGD consists of two sub-tools:

- The IFI to C structure parser (ICSP) sub-tool.

- The C structure to IFI graph display (CSIGD) sub-tool

34

The IGD gets the IFI code as input and generates the IFI graph as output. This is
done in two steps (see figure 28):

- ICSP takes the IFI code as input and generates a C structure as output.
- CSIGD takes the generated C structure as input and generates the IFI graph

as output using the graph manipulation menu (GMM)..

IF1 code C-Structure IF1I Graph

--- ICSP ,--- CSICP ,

FIGURE 28 IFI Graph Display (IGD) Tool. General View

The user selects a file.When doing so the IF1 graph corresponding to the IFI file
chosen is displayed. To further manipulate the graph the user must access the GMM
by pressing the middle mouse button inside the window containing the graph. The
IFi graph will be displayed hierarchically i.e. at different scopes of complexity. The
highest scope (scope 0) represents the less detailed one and the lowest scope (scope
n) represents the most detailed one.The position of every node in the graph is deter-
mined uniquely by its level and position in the graph. If there are four nodes
N1,N2,N3 and N4 in level i for example then they are given positions 0,1,2,and 3
respectively in that level. All the nodes at the same level will be displayed at the
same horizontal location so that the user can visualize that these nodes can be exe-
cuted in parallel (i.e. there is no data or control dependency between them). If a
node Ni should be executed before node Nj then Nj depends on node Ni and Ni
should be put in a higher level, where levelO is the highest level and level(n- 1) is the
lowest level if the total number of levels in the graph is n.A higher level of nodes is
displayed in a higher horizontal location. Figure 29 shows what the IFI graph will
look .In Figure 29 there are K +2 horizontal channels where K +1 is the total number
of levels in the graph;and p+2 vertical channels, where p +1 is the maximum num-
ber of nodes in any level. These channels are designed to manage displaying the IFI
graph edges, and literals. The total number of horizontal channels is equal to the
total number of levels minus one, and the total number of vertical channels is equal
to the maximum number of nodes in any level plus one. We will present later how
these channels are used to manage displaying the edges and literals.The IGD tool

35

receives the IFI code as C structures and produce the IFI graph as an output as
shown in Figure 29.The nodes are positioned in the window according to their level
and level position. To position the nodes their x and y coordinates as well as their
width and height are specified. All the nodes are of the same size. The width and
height of the nodes depend on the size of the window, the total number of nodes in
the graph, the total number of levels, and the maximum number of nodes in all the
levels

The edges are positioned according to their source and destination nodes as well as
the source and destination ports. The edges consist of line segments. If the destina-
tion node of some edge is in the next level of the source node of that edge then the
total number of line segments of that edge is three otherwise it is five as shown in
Figure 29. Line segments of the edges do not cross the nodes but pass through the
horizontal and vertical channels. To position the edges we must first build channels
for each graph, then the positions.

FIGURE 29 General View of the Displayed IFI Graph

After positioning the nodes and edges, and while the window where these nodes
and edges are to be drawn is created and mapped, we must use the X window system
functions to draw these nodes and edges in the window. We also draw the node
operation codes inside these nodes so that the user can understand the graph prop-
erly

36

B.5 error messages

When the user tries to do something which is not allowed, a new window will pop
up displaying an error message. This error message tells the user what should be
done first in order to be able to accomplish the command sucessfully. An example
of an error is when a user attempts to expand a simple node in an IFI graph. If a user
attempts this the following possible list of eror messages will be displayed:

- Can't expand; Last scope
- Can't collapse; Top scope.
- Please select a node first.
- Please select an edge first
- Please select a compound node first.
- Please select a call node first.
- Please select a partition first.
- The partition already exists. Choose another edge.
- Please select an edge with a REAL source node.
- Please select an edge and not a literal first.
- Please select a node or edge first.

37

